Tree Density and Forest Productivity in a Heterogeneous Alpine Environment: Insights from Airborne Laser Scanning and Imaging Spectroscopy

نویسندگان

  • Parviz Fatehi
  • Alexander Damm
  • Reik Leiterer
  • Mahtab Pir Bavaghar
  • Michael E. Schaepman
  • Mathias Kneubühler
  • Lars T. Waser
چکیده

We outline an approach combining airborne laser scanning (ALS) and imaging spectroscopy (IS) to quantify and assess patterns of tree density (TD) and forest productivity (FP) in a protected heterogeneous alpine forest in the Swiss National Park (SNP). We use ALS data and a local maxima (LM) approach to predict TD, as well as IS data (Airborne Prism Experiment—APEX) and an empirical model to estimate FP.We investigate the dependency of TD and FP on site related factors, in particular on surface exposition and elevation. Based on reference data (i.e., 1598 trees measured in 35 field plots), we observed an underestimation of ALS-based TD estimates of 40%. Our results suggest a limited sensitivity of the ALS approach to small trees as well as a dependency of TD estimates on canopy heterogeneity, structure, and species composition. We found a weak to moderate relationship between surface elevation and TD (R2 = 0.18–0.69) and a less pronounced trend with FP (R2 = 0.0–0.56), suggesting that both variables depend on gradients of resource availability. Further to the limitations faced in the sensitivity of the applied approaches, we conclude that the combined application of ALS and IS data was convenient for estimating tree density and mapping FP in north-facing forested areas, however, the accuracy was lower in south-facing forested areas covered with multi-stemmed trees. DOI: https://doi.org/10.3390/f8060212 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-138640 Veröffentlichte Version Originally published at: Fatehi, Parviz; Damm, Alexander; Leiterer, Reik; Pir Bavaghar, Mahtab; Schaepman, Michael E; Kneubühler, Mathias (2017). Tree density and forest productivity in a heterogeneous alpine environment: insights from airborne laser scanning and imaging spectroscopy. Forests, 8(6):212. DOI: https://doi.org/10.3390/f8060212 Article Tree Density and Forest Productivity in a Heterogeneous Alpine Environment: Insights from Airborne Laser Scanning and Imaging Spectroscopy Parviz Fatehi 1,*, Alexander Damm 1, Reik Leiterer 1, Mahtab Pir Bavaghar 2, Michael E. Schaepman 1 and Mathias Kneubühler 1 1 Remote Sensing Laboratories (RSL), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; [email protected] (A.D.); [email protected] (R.L.); [email protected] (M.E.S.); [email protected] (M.K.) 2 Center for Research and Development of Northern Zagros Forests, Faculty of Natural Resources, University of Kurdistan, 66177-15175 Sanandaj, Iran; [email protected] * Correspondence: [email protected]; Tel.: +41-44-635-6508 Academic Editors: Christian Ginzler and Lars T. Waser Received: 8 March 2017; Accepted: 9 June 2017; Published: 16 June 2017 Abstract: We outline an approach combining airborne laser scanning (ALS) and imaging spectroscopy (IS) to quantify and assess patterns of tree density (TD) and forest productivity (FP) in a protected heterogeneous alpine forest in the Swiss National Park (SNP). We use ALS data and a local maxima (LM) approach to predict TD, as well as IS data (Airborne Prism Experiment—APEX) and an empirical model to estimate FP. We investigate the dependency of TD and FP on site related factors, in particular on surface exposition and elevation. Based on reference data (i.e., 1598 trees measured in 35 field plots), we observed an underestimation of ALS-based TD estimates of 40%. Our results suggest a limited sensitivity of the ALS approach to small trees as well as a dependency of TD estimates on canopy heterogeneity, structure, and species composition. We found a weak to moderate relationship between surface elevation and TD (R2 = 0.18–0.69) and a less pronounced trend with FP (R2 = 0.0–0.56), suggesting that both variables depend on gradients of resource availability. Further to the limitations faced in the sensitivity of the applied approaches, we conclude that the combined application of ALS and IS data was convenient for estimating tree density and mapping FP in north-facing forested areas, however, the accuracy was lower in south-facing forested areas covered with multi-stemmed trees. We outline an approach combining airborne laser scanning (ALS) and imaging spectroscopy (IS) to quantify and assess patterns of tree density (TD) and forest productivity (FP) in a protected heterogeneous alpine forest in the Swiss National Park (SNP). We use ALS data and a local maxima (LM) approach to predict TD, as well as IS data (Airborne Prism Experiment—APEX) and an empirical model to estimate FP. We investigate the dependency of TD and FP on site related factors, in particular on surface exposition and elevation. Based on reference data (i.e., 1598 trees measured in 35 field plots), we observed an underestimation of ALS-based TD estimates of 40%. Our results suggest a limited sensitivity of the ALS approach to small trees as well as a dependency of TD estimates on canopy heterogeneity, structure, and species composition. We found a weak to moderate relationship between surface elevation and TD (R2 = 0.18–0.69) and a less pronounced trend with FP (R2 = 0.0–0.56), suggesting that both variables depend on gradients of resource availability. Further to the limitations faced in the sensitivity of the applied approaches, we conclude that the combined application of ALS and IS data was convenient for estimating tree density and mapping FP in north-facing forested areas, however, the accuracy was lower in south-facing forested areas covered with multi-stemmed trees.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Detection of Small Single Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning

A large proportion of Norway’s land area is occupied by the forest-tundra ecotone. The vegetation of this temperature-sensitive ecosystem between mountain forest and the alpine zone is expected to be highly affected by climate change and effective monitoring techniques are required. For the detection of such small pioneer trees, airborne laser scanning (ALS) has been proposed as a useful tool e...

متن کامل

Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study

This article reviews the recent literature concerning airborne laser scanning for forestry purposes in Italy, and presents the current methodologies used to extract forest characteristics from discrete return ALS (Airborne Laser Scanning) data. Increasing interest in ALS data is currently being shown, especially for remote sensing-based forest inventories in Italy; the driving force for this in...

متن کامل

A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space

In this study, eight airborne laser scanning (ALS)-based single tree detection methods are benchmarked and investigated. The methods were applied to a unique dataset originating from different regions of the Alpine Space covering different study areas, forest OPEN ACCESS Forests 2015, 6 1722 types, and structures. This is the first benchmark ever performed for different forests within the Alps....

متن کامل

Assessment of Low Density Full-Waveform Airborne Laser Scanning for Individual Tree Detection and Tree Species Classification

The paper investigated the possible gains in using low density (average 1 pulse/m 2 ) full-waveform (FWF) airborne laser scanning (ALS) data for individual tree detection and tree species classification and compared the results to the ones obtained using discrete return laser scanning. The aim is to approach a low-cost, fully ALS-based operative forest inventory method that is capable of provid...

متن کامل

Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data

Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017